Sensitivity Analysis of Limit-Cycle Oscillating Hybrid Systems

نویسندگان

  • Kamil A. Khan
  • Vibhu P. Saxena
  • Paul I. Barton
چکیده

A theory is developed for local, first-order sensitivity analysis of limit-cycle oscillating hybrid systems, which are dynamical systems exhibiting both continuous-state and discrete-state dynamics whose state trajectories are closed, isolated, and time-periodic. Methods for the computation of initial-condition sensitivities and parametric sensitivities are developed to account exactly for any jumps in the sensitivities at discrete transitions and to exploit the time-periodicity of the system. It is shown that the initial-condition sensitivities of any limit-cycle oscillating hybrid system can be represented as the sum of a time-decaying component and a time-periodic component so that they become periodic in the long-time limit. A method is developed for decomposition of the parametric sensitivities into three parts, characterizing the influence of parameter changes on period, state variable amplitudes, and relative phases, respectively. The computation of parametric sensitivities of period, amplitudes, and different types of phases is also described. The methods developed in this work are applied to particular models for illustration, including models exhibiting state variable jumps.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NORMAL FORM SOLUTION OF REDUCED ORDER OSCILLATING SYSTEMS

This paper describes a preliminary investigation into the use of normal form theory for modelling large non-linear dynamical systems. Limit cycle oscillations are determined for simple two-degree-of-freedom double pendulum systems. The double pendulum system is reduced into its centre manifold before computing normal forms. Normal forms are obtained using a period averaging method which is appl...

متن کامل

Algorithms for Computing Limit distributions of Oscillating Systems with Finite Capacity

We address the batch arrival  systems with finite capacity under partial batch acceptance strategy where service times or rates oscillate between two forms according to the evolution of the number of customers in the system. Applying the theory of Markov regenerative processes and resorting to Markov chain embedding, we present a new algorithm for computing limit distributions of the number cus...

متن کامل

Stability of Limit Cycles in Hybrid Systems

Limit cycles are common in hybrid systems. However the nonsmooth dynamics of such systems makes stability analysis difficult. This paper uses recent extensions of trajectory sensitivity analysis to obtain the characteristic multipliers of nonsmooth limit cycles. The stability of a limit cycle is determined by its characteristic multipliers. The concepts are illustrated using a coupled tank syst...

متن کامل

Computation and stability of limit cycles in hybrid systems

In this note, a practical way to compute limit cycles in context of hybrid systems is investigated. As in many hybrid applications the steady state is depicted by a limit cycle, control design and stability analysis of such hybrid systems require the knowledge of this periodic motion. Analytical expression of this cycle is generally an impossible task due to the complexity of the dynamic. A fas...

متن کامل

Techno- Economic and Life- Cycle Cost Assessment of the CCHP/ PV Hybrid System Application

In recent decades, excessive using fossil fuels has been resulted in emitting greenhouse gases such as CO2, consequently, environmental pollution. In this study, the techno-economic analysis of the CCHP/PV hybrid system application for a sample building was examined to reduce the environmental pollution and primary energy consumption of the buildings. The life-cycle cost analysis was...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2011